Temporal sentence grounding (TSG) aims to identify the temporal boundary of a specific segment from an untrimmed video by a sentence query. All existing works first utilize a sparse sampling strategy to extract a fixed number of video frames and then conduct multi-modal interactions with query sentence for reasoning. However, we argue that these methods have overlooked two indispensable issues: 1) Boundary-bias: The annotated target segment generally refers to two specific frames as corresponding start and end timestamps. The video downsampling process may lose these two frames and take the adjacent irrelevant frames as new boundaries. 2) Reasoning-bias: Such incorrect new boundary frames also lead to the reasoning bias during frame-query interaction, reducing the generalization ability of model. To alleviate above limitations, in this paper, we propose a novel Siamese Sampling and Reasoning Network (SSRN) for TSG, which introduces a siamese sampling mechanism to generate additional contextual frames to enrich and refine the new boundaries. Specifically, a reasoning strategy is developed to learn the inter-relationship among these frames and generate soft labels on boundaries for more accurate frame-query reasoning. Such mechanism is also able to supplement the absent consecutive visual semantics to the sampled sparse frames for fine-grained activity understanding. Extensive experiments demonstrate the effectiveness of SSRN on three challenging datasets.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Recent studies have found that pain in infancy has a significant impact on infant development, including psychological problems, possible brain injury, and pain sensitivity in adulthood. However, due to the lack of specialists and the fact that infants are unable to express verbally their experience of pain, it is difficult to assess infant pain. Most existing infant pain assessment systems directly apply adult methods to infants ignoring the differences between infant expressions and adult expressions. Meanwhile, as the study of facial action coding system continues to advance, the use of action units (AUs) opens up new possibilities for expression recognition and pain assessment. In this paper, a novel AuE-IPA method is proposed for assessing infant pain by leveraging different engagement levels of AUs. First, different engagement levels of AUs in infant pain are revealed, by analyzing the class activation map of an end-to-end pain assessment model. The intensities of top-engaged AUs are then used in a regression model for achieving automatic infant pain assessment. The model proposed is trained and experimented on YouTube Immunization dataset, YouTube Blood Test dataset, and iCOPEVid dataset. The experimental results show that our AuE-IPA method is more applicable to infants and possesses stronger generalization ability than end-to-end assessment model and the classic PSPI metric.
translated by 谷歌翻译
The security of artificial intelligence (AI) is an important research area towards safe, reliable, and trustworthy AI systems. To accelerate the research on AI security, the Artificial Intelligence Security Competition (AISC) was organized by the Zhongguancun Laboratory, China Industrial Control Systems Cyber Emergency Response Team, Institute for Artificial Intelligence, Tsinghua University, and RealAI as part of the Zhongguancun International Frontier Technology Innovation Competition (https://www.zgc-aisc.com/en). The competition consists of three tracks, including Deepfake Security Competition, Autonomous Driving Security Competition, and Face Recognition Security Competition. This report will introduce the competition rules of these three tracks and the solutions of top-ranking teams in each track.
translated by 谷歌翻译
Virtual reality (VR) over wireless is expected to be one of the killer applications in next-generation communication networks. Nevertheless, the huge data volume along with stringent requirements on latency and reliability under limited bandwidth resources makes untethered wireless VR delivery increasingly challenging. Such bottlenecks, therefore, motivate this work to seek the potential of using semantic communication, a new paradigm that promises to significantly ease the resource pressure, for efficient VR delivery. To this end, we propose a novel framework, namely WIreless SEmantic deliveRy for VR (WiserVR), for delivering consecutive 360{\deg} video frames to VR users. Specifically, deep learning-based multiple modules are well-devised for the transceiver in WiserVR to realize high-performance feature extraction and semantic recovery. Among them, we dedicatedly develop a concept of semantic location graph and leverage the joint-semantic-channel-coding method with knowledge sharing to not only substantially reduce communication latency, but also to guarantee adequate transmission reliability and resilience under various channel states. Moreover, implementation of WiserVR is presented, followed by corresponding initial simulations for performance evaluation compared with benchmarks. Finally, we discuss several open issues and offer feasible solutions to unlock the full potential of WiserVR.
translated by 谷歌翻译
Recent studies reveal that deep neural network (DNN) based object detectors are vulnerable to adversarial attacks in the form of adding the perturbation to the images, leading to the wrong output of object detectors. Most current existing works focus on generating perturbed images, also called adversarial examples, to fool object detectors. Though the generated adversarial examples themselves can remain a certain naturalness, most of them can still be easily observed by human eyes, which limits their further application in the real world. To alleviate this problem, we propose a differential evolution based dual adversarial camouflage (DE_DAC) method, composed of two stages to fool human eyes and object detectors simultaneously. Specifically, we try to obtain the camouflage texture, which can be rendered over the surface of the object. In the first stage, we optimize the global texture to minimize the discrepancy between the rendered object and the scene images, making human eyes difficult to distinguish. In the second stage, we design three loss functions to optimize the local texture, making object detectors ineffective. In addition, we introduce the differential evolution algorithm to search for the near-optimal areas of the object to attack, improving the adversarial performance under certain attack area limitations. Besides, we also study the performance of adaptive DE_DAC, which can be adapted to the environment. Experiments show that our proposed method could obtain a good trade-off between the fooling human eyes and object detectors under multiple specific scenes and objects.
translated by 谷歌翻译
尖峰神经网络(SNNS)模仿大脑计算策略,并在时空信息处理中表现出很大的功能。作为人类感知的基本因素,视觉关注是指生物视觉系统中显着区域的动态选择过程。尽管视觉注意力的机制在计算机视觉上取得了巨大成功,但很少会引入SNN中。受到预测注意重新映射的实验观察的启发,我们在这里提出了一种新的时空通道拟合注意力(SCTFA)模块,该模块可以通过使用历史积累的空间通道信息来指导SNN有效地捕获潜在的目标区域。通过在三个事件流数据集(DVS手势,SL-Animals-DVS和MNIST-DVS)上进行系统评估,我们证明了带有SCTFA模块(SCTFA-SNN)的SNN不仅显着超过了基线SNN(BL-SNN)(BL-SNN)(BL-SNN)以及其他两个具有退化注意力模块的SNN模型,但也通过现有最新方法实现了竞争精度。此外,我们的详细分析表明,所提出的SCTFA-SNN模型对噪声和出色的稳定性具有强大的稳健性,同时保持了可接受的复杂性和效率。总体而言,这些发现表明,适当纳入大脑的认知机制可能会提供一种有希望的方法来提高SNN的能力。
translated by 谷歌翻译
我们提出协调指导矢量字段,以与机器人团队同时完成两个任务:首先,多个机器人的指导和导航到可能嵌入2D或3D中的可能不同的路径或表面;其次,他们的运动协调在跟踪他们的规定路径或表面时。运动配位是由路径或表面上的机器人之间所需的参数位移定义的。通过控制对应于指导矢量场之间的路径或表面参数的虚拟坐标来实现这种所需的位移。由动力学系统理论和Lyapunov理论支撑的严格数学保证,用于从所有初始位置上有效的分布式运动协调和机器人在路径或表面上导航。作为实用机器人应用的一个例子,我们从所提出的具有驱动饱和度的Dubins-car样模型的指导向量场中得出了一种对照算法。我们提出的算法分布并可扩展到任意数量的机器人。此外,广泛的说明性模拟和固定翼飞机户外实验验证了我们算法的有效性和鲁棒性。
translated by 谷歌翻译
对抗训练(AT)方法有效地防止对抗性攻击,但它们在不同阶级之间引入了严重的准确性和鲁棒性差异,称为强大的公平性问题。以前建议的公平健壮的学习(FRL)适应重新重量不同的类别以提高公平性。但是,表现良好的班级的表现降低了,导致表现强劲。在本文中,我们在对抗训练中观察到了两种不公平现象:在产生每个类别的对抗性示例(源级公平)和产生对抗性示例时(目标级公平)时产生对抗性示例的不​​同困难。从观察结果中,我们提出平衡对抗训练(BAT)来解决强大的公平问题。关于源阶级的公平性,我们调整了每个班级的攻击强度和困难,以在决策边界附近生成样本,以便更容易,更公平的模型学习;考虑到目标级公平,通过引入统一的分布约束,我们鼓励每个班级的对抗性示例生成过程都有公平的趋势。在多个数据集(CIFAR-10,CIFAR-100和IMAGENETTE)上进行的广泛实验表明,我们的方法可以显着超过其他基线,以减轻健壮的公平性问题(最坏的类精度为+5-10 \%)
translated by 谷歌翻译
Federated学习(FL)最近作为一种增强隐私的工具而受到了极大的关注,可以由多个参与者共同培训机器学习模型。FL的先前工作主要研究了如何在模型培训期间保护标签隐私。但是,FL中的模型评估也可能导致私人标签信息的潜在泄漏。在这项工作中,我们提出了一种评估算法,该算法可以准确计算使用FL中的标签差异隐私(DP)时,可以准确计算广泛使用的AUC(曲线下)度量。通过广泛的实验,我们显示我们的算法可以计算与地面真相相比的准确AUC。
translated by 谷歌翻译